Blog de Fernando Santamaría

Reflexiones sobre ecologías y espacios del aprendizaje, análisis del aprendizaje y análisis de redes sociales, visualización de datos, Big Data y otros temas emergentes

Categoría: redes sociales (página 1 de 11)

Redes sociales y periodismo [slides]

Dejo la presentación que hice en Quito y Loja sobre cómo las tecnologías de redes y las tecnologías de movilidad están transformando significativamente el periodismo. Es una visión foránea al periodismo (no soy periodista). Creo que se requiere este ejercicio para que se vean distintas visiones del cambio y transformación de un oficio. Gracias a la Universidad Técnica Particular de Loja y su sede en Quito por acogerme tan bien.
Espero vuestros aportes y comentarios.

El análisis de redes urbanas para una optimización de ciudades nodales y ubicuas.

La ciudad es un organismo fascinante que en en nuestro entorno tecno-social y de visión expandida por la cantidad de datos que produce y capas que soporta hace posible un futuro esperanzador para que sea el eje de grandes nichos para la innovación y de un desarrollo sostenible a través de una ciudad ubicua, más allá de concepto romo de smart cities.

En una dimensión de complejidad hay un tipo de redes que nos dan sentido al flujo desordenado como son las redes espaciales.

Algunos de los principios geográficos que describen A. Reggiani y P. Nijkamp (2009) a través de la ley de simplicidad geográfica de W. Tobler en 1970 en la que establece que todo espacio está relacionado con todos los demás, y las cosas cercanas están más relacionadas que las cosas lejanas. La solidez de esta ley tiene que ser reconsiderada a la luz de los recientes avances en la teoría de la complejidad y de la redes espaciales con dispositivos tecnológicos. En particular, los últimos descubrimientos en la teoría de redes muestran cómo – para determinadas tipologías de redes – las cosas distantes pueden estar relacionados a través de “hubs” o “ego” (nodos preferenciales o atractores) en redes espaciales de lugares urbanos. Las redes espaciales parecen ejercer un impacto dinámico en un espacio organizado. Son muy importantes para desarrollar investigaciones de carácter dinámico en el tiempo (análisis de redes de carácter dinámico e interdisciplinar)

Una red espacial es una red de elementos espaciales. En el espacio físico (que normalmente incluye el espacio urbano  y sus elementos “incrustados” como edificios, parques, transportes, personas) las redes espaciales se derivan de los mapas y de los espacios abiertos en el contexto urbano o la construcción. Uno podría pensar en el “mapa espacial” como la imagen negativa del mapa estándar, con el espacio abierto en los edificios de fondo o las paredes. El mapa del espacio se rompe en unidades, la mayoría de carácter simple, como por ejemplo los segmentos de una carretera o las cuadras de varios edificios. Los segmentos de una carretera (son los nodos del grafo) pueden estar vinculados a una red a través de sus intersecciones (los bordes de un grafo).Un ejemplo común de una red espacial, el análisis de redes de transporte, revierte esto y trata a los tramos de carretera como los bordes y las intersecciones de las calles como nodos en el gráfico.

 En términos más generales, la red territorial “del término ha llegado a ser usado para describir cualquier red en la que los nodos se encuentran en un espacio equipado con una métrica. Para la mayoría de las aplicaciones prácticas, el espacio es la distancia entre dos dimensiones (2D) y la métrica es la distancia euclídea habitual. Esta definición implica, en general, que la probabilidad de encontrar un vínculo entre dos nodos disminuye con la distancia. Las redes de transporte y de movilidad (entraría las nuevas redes con móviles o celulares ad hoc), Internet, redes de telefonía móvil, redes eléctricas, redes sociales y contactos, redes neuronales, son ejemplos donde el espacio es relevante y donde la topología por sí sola no contiene toda la información. Son redes que se vierten y se “visualizan” sobre una plataforma topológica. El mapa como elemento de base y lo rizomático como visión deleuziana. Caracterizar y comprender la estructura y la evolución de las redes espaciales es crucial para muchos campos que van desde el urbanismo a la epidemiología.

 

Una consecuencia importante del espacio en las redes es que hay un costo asociado a la longitud de las aristas (identificado con lo relacional en las grandes ciudades), que a su vez tiene efectos dramáticos en la estructura topológica de estas redes. Las limitaciones del espacio no sólo afectan a la estructura y propiedades de estas redes, sino también a los procesos que tienen lugar en estas redes, como las transiciones de fase, las caminatas al azar, la sincronización que se ha estudiado por parte de  Watts y Strogatz (Collective dynamics of small-world networks,1998). Otros aspectos a tratar en las redes espaciales es la navegación (el closeness y las rutas geodésicas a microescala), la resiliencia y la propagación-meme de una enfermedad en una red espacial de una ciudad.

Una definición de la red espacial se deriva de la teoría del espacio y las sintaxis que pueden adscribirse (quedan abiertas ya que está en proceso de escritura constante). Puede ser muy difícil decidir lo que es un elemento espacial, sobre todo si están en espacios complejos que implican grandes áreas abiertas o muchos caminos interconectados. Los creadores de la sintaxis espacial, Bill Hillier y Juliana Hanson con su libro “The social logic of space” (1989) utilizando líneas axiales y espacios convexos como elementos espaciales. Libremente, una línea axial es la ‘línea más larga de la vista y el acceso a través de espacios abiertos, y un espacio convexo el “polígono convexo al máximo” que se puede dibujar en el espacio abierto (en el análisis de redes podemos relacionarlo con los caminos geodésicos entre todos los pares posibles). Cada uno de estos elementos se define por la geometría de los límites locales en diferentes regiones del mapa espacial. La descomposición de un mapa en un espacio se realiza en un conjunto completo de líneas en intersección o superposición de espacios axiales convexos que produce el mapa axial o la superposición del mapa convexo respectivamente. Definiciones algorítmica de estos mapas existen, lo que permite el mapeo de un mapa del espacio en forma arbitraria a una red susceptible de grafo matemático que se llevarán a cabo de una manera relativamente bien definido. Los mapas axiales se utilizan para analizar las redes urbanas (Urban Networks), donde el sistema en general, comprende los segmentos lineales, mientras que los mapas convexos son más a menudo utilizados para analizar los planes de construcción donde los patrones de espacio suelen ser más convexos, sin embargo los dos mapas, tanto el convexo como el axial, se puede utilizar en cualquier situación.

Análisis de Redes Urbanas

El análisis de redes urbanas tiene sus orígenes en la misma Teoría de Grafos. En el siglo XVIII el matemático y físico suizo Leonhard Paul Euler planteó el problema de los puentes de Königsberg y teniendo una vertiente matemática para interpretar algoritmicamente muchos de los problemas e intersección de los datos que emanan las grandes ciudades (Blanchard, 2009). Está relacionado y algoritmicamente mejorable a través de redes de flujos matemáticos y el enroutamiento heurístico que tienen algunos de los dispositivos como los GPS.

El MIT distribuye una toolbox (tiene más de un año, llamada Urban Network Analysis, 2012) de libre acceso y de código abierto como plug-in para ArcGIS, permite a los diseñadores y planificadores urbanos calcular cinco tipos de medidas de análisis urbano en redes espaciales:

Reach (alcance o distancia); Gravity (Gravedad); Betweenness (intermediación); Closeness (cercanía) y Straightness (Rectitud).

La medida de alcance, por ejemplo, se puede utilizar el número de destinos de un tipo en particular y que llega a un punto determinado por medio de la circulación en la ciudad (En ARS:  es el grado en que cualquier miembro de una red puede llegar a otros miembros de la misma red. Un actor es “accesible” por otro, si hay un conjunto de conexiones a través de la las cuales  podemos encontrar desde el actor fuente al actor “diana”, sin importar cuántas otras personas se encuentran entre ellos. Si los datos son asimétricos o dirigidos, es posible que un actor A pueda llegar a un actor B, pero que B no pueda llegar a A.

Por ejemplo, la medida de intermediación (betweenness) se puede utilizar para cuantificar el número potencial de transeúntes en cada edificio.

Las herramientas incorporan tres características importantes que hacen análisis de redes especialmente adecuado para las redes urbanas de una ciudad. En primer lugar, representan la geometría y las distancias en las redes de entrada, distinguiendo enlaces más cortos de los enlaces más largos, como parte de los cálculos de análisis.

En segundo lugar, la diferencia de las herramientas de software anteriores es que operan con dos elementos de red (nodos y los bordes), las herramientas Urban Network Analysis (UNA) incluyen un tercer elemento de red – los edificios – que se utilizan las unidades espaciales de análisis para todas las medidas. Dos edificios vecinos en los mismos segmentos de la calle por lo que pueden obtener resultados diferentes de accesibilidad (Reach).

Y en tercer lugar, las herramientas UNA opcionalmente permiten edificios que se ponderan en función de sus características particulares – más voluminosos, más pobladas, o de los edificios más importantes de lo contrario pueden ser especificados para tener un efecto proporcionalmente mayor en los resultados de análisis, con resultados más precisos y fiables para algunas de las medidas especificadas arriba.

La caja de herramientas ofrece un potente conjunto de opciones de análisis para cuantificar la forma centralizada de cada edificio que se sitúa en un entorno urbano y la facilidad con que un usuario puede acceder a los diferentes servicios de cada lugar. Se introduce una nueva metodología para el seguimiento del crecimiento y el cambio de las ciudades en el mundo que se urbaniza rápidamente y ofrece apoyo analítico a sus diseñadores y responsables políticos. Puede que también sea una fuente de información en la analítica del ciudadano y ligado a los dispositivos móviles que les da una posición precisa y en relación con el Internet de las cosas. Por ejemplo: los taxis serán “objetos” reconocibles en cualquier área de la ciudad y tomado información de su conductor, horas que lleva navegando, distancia desde donde estás, accesibilidad y tiempo que tarda según las variables de tráfico. etc., y todo ello sobre la “plataforma” de un mapa. Usando este análisis de redes urbano nos dará una mayor conciencia y posibilidades desde una perspectiva comunitaria de carácter ubicuo (Giuffre, 2013). El imaginario topológico de una ciudad será inmensamente rico y las redes urbanas será un elemento importante en el nuevo ecosistema urbano junto con los datos generados a nivel masivo.

El vídeo que se creó en el MIT para la presentación de este toolbox de ArcGIS:

Urban Network Analysis from City Form Lab on Vimeo.

Referencias bibliográficas:

Ardekani, S. A., Williams, J. C., & Bhat, S. (1992). Influence of urban network features on quality of traffic service. Transportation Research Record, (1358). Retrieved from http://trid.trb.org/view.aspx?id=371462
Bailey, T. C. (1995). Interactive spatial data analysis. Harlow Essex, England; New York, NY: Longman Scientific & Technical ; J. Wiley.
Barthélemy, M. (2011). Spatial networks. Physics Reports, 499(1–3), 1–101. doi:10.1016/j.physrep.2010.11.002
Becker, R. A., Caceres, R., Hanson, K., Loh, J. M., Urbanek, S., Varshavsky, A., & Volinsky, C. (2011). A Tale of One City: Using Cellular Network Data for Urban Planning. IEEE Pervasive Computing, 10(4), 18 –26. doi:10.1109/MPRV.2011.44
Blanchard, P. (2009). Mathematical analysis of urban spatial networks. Berlin: Springer. Retrieved from http://public.eblib.com/EBLPublic/PublicView.do?ptiID=418348
Blokland, T., & Savage, M. (Eds.). (2012). Networked Urbanism. Ashgate.
Breaking down learner isolation:  How social network analysis informs design  and facilitation for online learning. (n.d.).
Calabrese, F., Colonna, M., Lovisolo, P., Parata, D., & Ratti, C. (2011). Real-Time Urban Monitoring Using Cell Phones: A Case Study in Rome. IEEE Transactions on Intelligent Transportation Systems, 12(1), 141 –151. doi:10.1109/TITS.2010.2074196
Campbell, T. (2012). Beyond Smart Cities: How Cities Network, Learn and Innovate. London: Routledge.
Cheng, J., Clercq, F. L., & Bertolini, L. (2005). Understanding urban networks through accessibility (ERSA conference paper No. ersa05p797). European Regional Science Association. Retrieved from http://ideas.repec.org/p/wiw/wiwrsa/ersa05p797.html
Crucitti, P., Latora, V., & Porta, S. (2006). Centrality measures in spatial networks of urban streets. Physical Review E, 73(3), 036125. doi:10.1103/PhysRevE.73.036125
Deakin, M., & Waer, H. A. (Eds.). (2012). From Intelligent to Smart Cities (1st ed.). Routledge.
Duany, A., Speck, J., & Lydon, M. (2009). The Smart Growth Manual (1st ed.). McGraw-Hill Professional.
DuPuy, G. (2008). Urban Networks: Network Urbanism. Techne Press.
Entwisle, B., Rindfuss, R. R., Walsh, S. J., Evans, T. P., & Curran, S. R. (1997). Geographic information systems, spatial network analysis, and contraceptive choice. Demography, 34(2), 171–187. doi:10.2307/2061697
Eubank, S., Guclu, H., Kumar, V. S. A., Marathe, M. V., Srinivasan, A., Toroczkai, Z., & Wang, N. (2004). Modelling disease outbreaks in realistic urban social networks. Nature, 429(6988), 180–184. doi:10.1038/nature02541
Expert, P., Evans, T. S., Blondel, V. D., & Lambiotte, R. (2011). Uncovering space-independent communities in spatial networks. Proceedings of the National Academy of Sciences, 108(19), 7663–7668. doi:10.1073/pnas.1018962108
Gastner, M. T., & Newman, M. E. J. (2006). The spatial structure of networks. The European Physical Journal B – Condensed Matter and Complex Systems, 49(2), 247–252. doi:10.1140/epjb/e2006-00046-8
Gerla, M., & Kleinrock, L. (2011). Vehicular networks and the future of the mobile internet. Computer Networks, 55(2), 457–469. doi:10.1016/j.comnet.2010.10.015
Glaeser, E. L. (2011). Triumph of the City: How Our Greatest Invention Makes Us Richer, Smarter, Greener, Healthier, and Happier (First Edition.). Penguin Press HC, The.
Haas, T. (Ed.). (2012). Sustainable Urbanism and Beyond: Rethinking Cities for the Future. Rizzoli.
Häkli, J., & Minca, C. (2009). Social Capital and Urban Networks of Trust. (C. Minca & J. Hakli, Eds.). Farnham: Ashgate. Retrieved from http://www.ashgate.com/isbn/9780754673194
Herrmann, C., Barthélemy, M., & Provero, P. (2003). Connectivity distribution of spatial networks. Physical Review E, 68(2), 026128. doi:10.1103/PhysRevE.68.026128
Hillier, B., & Hanson, J. (1989). The Social Logic of Space (Reprint.). Cambridge University Press.
Horton, F. E. (1968). Geographic studies of urban transportation and network analysis. Evanston, Ill.: Dept. of Geography, Northwestern University.
Jiang, B., & Claramunt, C. (2004). Topological analysis of urban street networks. Environment and Planning B: Planning and Design, 31(1), 151 – 162. doi:10.1068/b306
Johnson, C., & Gilles, R. P. (2000). Spatial social networks. Review of Economic Design, 5(3), 273–299. doi:10.1007/PL00013690
Khurana, U., Nguyen, V.-A., Cheng, H.-C., Ahn, J., Chen, X., & Shneiderman, B. (2011). Visual Analysis of Temporal Trends in Social Networks Using Edge Color Coding and Metric Timelines. In Privacy, security, risk and trust (passat), 2011 ieee third international conference on and 2011 ieee third international conference on social computing (socialcom) (pp. 549 –554). Presented at the Privacy, security, risk and trust (passat), 2011 ieee third international conference on and 2011 ieee third international conference on social computing (socialcom). doi:10.1109/PASSAT/SocialCom.2011.212
Larsen, J. U. and K. A. J. (2012). Mobilities, Networks, Geographies. Ashgate.
Lennartsson, J., Håkansson, N., Wennergren, U., & Jonsson, A. (2012). SpecNet: A Spatial Network Algorithm that Generates a Wide Range of Specific Structures. PLoS ONE, 7(8), e42679. doi:10.1371/journal.pone.0042679
Lynch, K. (1960). The Image of the City. The MIT Press.
Maguire, D. J., Goodchild, M. F., & Batty, M. (Eds.). (2005). GIS, Spatial Analysis, and Modeling. ESRI Press.
Nijkamp, P. (1993). Stability and complexity in spatial networks. Amsterdam [etc.]: Tinbergen Institute.
Peng, C., Jin, X., Wong, K.-C., Shi, M., & Liò, P. (2012). Collective Human Mobility Pattern from Taxi Trips in Urban Area. PLoS ONE, 7(4), e34487. doi:10.1371/journal.pone.0034487
Porta, S., Crucitti, P., & Latora, V. (2005). The Network Analysis of Urban Streets: A Primal Approach. arXiv:physics/0506009. doi:10.1016/j.physa.2005.12.063
Reggiani, A & Nijkamp, P. (Ed) (2009). Complexity and spatial networks: in search of simplicity. Berlin; Heidelberg: Springer-Verlag.
Ryder, T. B., Horton, B. M., Tillaart, M. van den, Morales, J. D. D., & Moore, I. T. (2012). Proximity data-loggers increase the quantity and quality of social network data. Biology Letters. doi:10.1098/rsbl.2012.0536
Santos Soares, M. dos. (2007). Scenario analysis of a network of traffic signals designed with Petri nets. Urban transport XIII : urban transport and the environment in the 21st century., 289–297.
Sassen, S. (Ed.). (2002). Global Networks, Linked Cities (1st ed.). Routledge.
Scellato, S. (2012). Spatial Social Networks: Measurement, Analysis and Applications Second Year Report & Dissertation Schedule. Retrieved from http://www.cl.cam.ac.uk/~ss824/pub/papers/second_report.pdf
Seghers, J. (n.d.). Urban Network Analysis: tracking and planning urban environments. the Human City Project. Blog. Retrieved May 27, 2013, from http://humancityproject.wordpress.com/2013/01/14/urban-network-analysis-tracking-and-planning-urban-environments/
Sevtsuk, A. (2012). Urban network analysis. A new toolbox for ArcGIS. Revue internationale de géomatique Revue internationale de géomatique, 22(2), 287–305. Retrieved from http://www.sutd.edu.sg/cmsresource/idc/papers/2012_Urban_Network_Analysis_A%20New%20Toolbox_for_ArcGIS.pdf
Simplicity in complex spatial systems : introduction / Aura Reggiani and Peter Nijkamp –pt. A, Complexity, evolution, a. (n.d.).
Spatial network. (2013, March 19). In Wikipedia, the free encyclopedia. Retrieved from http://en.wikipedia.org/w/index.php?title=Spatial_network&oldid=491038418
STNA: Spatio-Temporal Network Analysis. (n.d.). Retrieved December 3, 2012, from http://www.cl.cam.ac.uk/research/srg/netos/spatialtemporalnetworks/
Taylor, P. J. (2004). World city network: a global urban analysis. London; New York: Routledge.
Taylor, P. J. (2011). Global Urban Analysis: A Survey of Cities in Globalization. Routledge.
Torres, J. A. (2011, September 28). Urban Network Analysis. Advanced Analytics & Data Mining. Retrieved from http://www.jatorres.net/blog/urban-network-analysis/
Transport network. (2012, October 16). In Wikipedia, the free encyclopedia. Retrieved from http://en.wikipedia.org/w/index.php?title=Transport_network&oldid=470935534
Urban Network Analysis. (2012). Retrieved from http://vimeo.com/44728530
Urban Network Analysis: A Toolbox for ArcGIS 10 / 10.1. (2013). City Form Lab: Better Design through Research. Retrieved from http://cityform.mit.edu/projects/urban-network-analysis.html
Urban Networks: La misión fundamental de Urban Networks es la transformación creativa de las ciudades y los territorios. (n.d.). Blog. Retrieved from http://urban-networks.blogspot.com.es/
Viotti, P., Liuti, G., & Di Genova, P. (2002). Atmospheric urban pollution: applications of an artificial neural network (ANN) to the city of Perugia. Ecological Modelling, 148(1), 27–46. doi:10.1016/S0304-3800(01)00434-3
Virginia Polytechnic Institute and State University., D. of U. A. and P. (1987). The Urban network. The Urban network.
Williams, J. C., Mahmassani, H. S., & Herman, R. (1987). Urban traffic network flow models. Transportation Research Record, (1112). Retrieved from http://trid.trb.org/view.aspx?id=278349
Wineman, J. D., Kabo, F. W., & Davis, G. F. (2009). Spatial and Social Networks in Organizational Innovation. Environment and Behavior, 41(3), 427–442. doi:10.1177/0013916508314854
Wyatt, R. G. (1980). Network analysis in urban planning. Melbourne: University of Melbourne, Faculty of Architecture, Building and Town & Regional Planning.
Yiu, M. L., & Mamoulis, N. (2004). Clustering objects on a spatial network. In Proceedings of the 2004 ACM SIGMOD international conference on Management of data (pp. 443–454). New York, NY, USA: ACM. doi:10.1145/1007568.1007619

La difusión de las ideas en las organizaciones y la importancia de los vínculos débiles [emprendimientos]

Pensando desde una perspectiva de psicología social, para la mayoría de nosotros, las redes sociales [en conceptualización amplia] son relativamente pequeñas y constan de unas 5 personas, algunos hablan de 3 como constitución. Serían propiamente círculos íntimos unas 5 personas. Con 15 personas se trataría de las muy cercanas. Ya con 50, sería con las que nos comunicamos regularmente, 150 con las que mantenemos relaciones sociables estables (Se trata del número de Dunbar: La razón es que representa la máxima (teórica) número de personas que una persona razonablemente puede interactuar. Como muchos blogs puede una persona leer, seguir y responder? Tal vez en torno a 150, si Dunbar es correcta. Lo que significa que si tenemos 170 blogs, a continuación, los blogs no constituyen un “núcleo” – la gente comienza a ser selectivo sobre qué blogs se está leyendo, y diferentes subcomunidades (e interactivos) se pueden formar.). Y con 500 personas que apenas conocemos, pero que podemos reconocer (esto está inscrito en lo que podemos llamar según Mark Granovetter los “vínculos débiles” weak ties o como le llamaba “la fuerza de los vínculos débiles”).
El coworking en estos centros como hubBOG fortalece aún más estos vínculos débiles. En un trabajo de Steve King y Carolyn Ockels, concretamente Emergent Research,  establece una serie de criterios después de haber entrevistado a más de 100 miembros de espacios de cotrabajo durante 9 meses:
1) El cotrabajo o coworking expone a los miembros de sus espacios a gente nueva y a nuevas experiencias, y lo que hace es expandir su red de vínculos débiles. Alenta la interacción comunitaria con eventos, reuniones sociales y comidas como la que estamos celebrando hoy.
2) Estos autores afirman que es más fácil aprovechar las redes de vínculos débiles basadas en el cotrabajo o coworking. Hay que entender lo contrario a las relaciones que se establecen en los sitios de redes sociales tipo G+ o Facebook, donde los coworkers comprenden que el trabajo en red es parte de ser miembros de un espacio en red y por eso aquí tiene su gran importancia el medio. Este medio se le da un valor (añadido) para lograr un fin.
3) Los administradores de la comunidad fomentan la formación de redes de vínculos débiles. Estas comunidades de coworking deben tener un administrador o facilitador que ayude a la gente a conectarse entre sí. Y los miembros de estas comunidades  suelen acudir a estos manager o facilitadores para resolución de problemas y para el incremento de las posibilidades en la red.

La expansión de las redes de vínculos débiles orientadas a negocios en espacios como HubBOG en Bogotá es un beneficio poderoso del coworking. Los trabajadores desde sus casas (teletrabajo) suelen decirnos que es más complicado crear y hacer crecer sus redes comerciales. El coworking, con su estructura en red generando comunidades de apoyo y afinidad empresarial y con contacto físico (esto no quita para crear espacios virtuales y video conferencencias para remarcar estrategias y generar un content marketing. Supone la solución algunos de los problemas del trabajo de consultores aislados y freelancers.

Habría que diferenciar por otro lado lo que entendemos por grupos y comunidades para establecer las estrategias de trabajo de la empresa en cuestión.
Por ejemplo según nos cuenta Paul Adams en Grouped, la mayoría de la gente tiene de 4 a 6 grupos [inmersos en redes y a veces en estructura de cliqués o de carácter homofílico] independientes de menos de 10 amigos, y por lo general estos no se superponen. Todos nosotros conectamos de forma única múltiples grupos de personas. La importancia de este hecho radica en que, para que nuestras ideas se extiendan, necesitamos contar con estos grupos de amigos conectados. Hay que estudiar en una estructura de red la difusión por medio de la visualización de esta red y ver cuales son las personas que pueden interconectar los grupos (no las personas influyentes en la que siempre hemos creído) y para su expansión e innovación. Lo que llama R. S. Burt agujeros estructurales (Structural holes) en uno de sus libros más importantes: Structural holes: the social structure of competition.
Me ha parecido muy interesante lo que dice con una serie de ideas sobre la innovación y la creatividad (dos formas distintas de mejorar y ser mas “competitivos”) están en los márgenes o confines de la propia centralidad del trabajo, está en la heterogeneidad de las redes, en las dinámicas establecidas y que no generen cliquismo de manera constante.

Por eso creemos que al difundir las ideas desde la perspectiva comercial y de negocios, la estructura de la red es más importante que las características de los individuos siguiendo los parámetros de Paul Adams.
Por todo ello, los individuos y los hubs (esos concentradores) son muy importantes a la hora de difundir ideas. Hay dos tipos de concentradores:
1) Los más avezados e innovadores y que son un número reducido de personas abiertas a nuevas ideas, que son adaptadores de procesos rápidos y lo pasan a un número limitado de personas.
2) Los seguidores (replicantes de ideas) y que tienen un número más elevado de conexiones y, aunque a menudo adoptan ideas mucho más tarde que los innovadores, son más importantes para alcanzar poblaciones masivas y usar las técnicas virales. Por eso los “influyentes” no son tan importantes en la difusión de las ideas como se creía hasta ahora.
La importancia del análisis de las redes y la visualización de estas es fundamental para sobrevivir a las masivas interacciones provocadas por los sitios de redes sociales.. Entenderlas y visualizarlas es importante para mantener un negocio “competitivo” en el siglo XXI.
Este post está escrito para el almuerzo de networking en una de las grandes incubadoras de negocios en Bogotá: hubBOG. Te esperamos mañana, viernes 18 de enero de 2013.
Ha sido un post espontáneo, a partir de algunas de las ideas de este blog.

La homofilia: un principio activo en la estructura de las redes sociales

Según el item inglés de la Wikipedia (tomado de Charles Kadushin) define homofilia como la tendencia de los individuos a asociarse y relacionarse con los semejantes a uno (concepto de carácter sociológico). La presencia de homofilia se ha descubierto en una gran variedad de estudios de la red. Dentro de su trabajo de revisión extenso, “Birds of a Feather: Homophily in Social Networks” [pdf] (edición 2001) de los sociólogos Miller McPherson, Lynn Smith-Lovin y James M. Cook citando más de cien estudios que han observado homofilia de una forma u otra y establecen que categorías poseen similitud de conexión. Estas incluyen la edad, el género, la clase, el papel de la organización, y así sucesivamente.

Algunas definiciones más

Según comenta  Charles Kadushin (2012) la homofilia (del griego, “amor de lo mismo o a los iguales”) es un concepto introducido en la teoría social por Lazarsfeld y Merton (1954) que incorpora, una propuesta popular como es la de “las aves del mismo plumaje vuelan juntas”(1º regla: somos nosotros quienes damos forma a nuestra red. En el capítulo 1 del libro “Connected:…” (2010) de Nicholas A. Christakis y James H Fowler [versión epub, p. 33-37], sección Reglas de la vida en la red y su regla primera de cada obeja con su pareja o Dios los cría y ellos se juntan) . Más formalmente, si dos personas tienen características que coinciden en una proporción mayor que la esperada en la población de extracción  o la red de la que forman parte, entonces son más propensos a estar conectados. La inversa también es cierta: si dos personas están conectadas, entonces es más probable que tenga características o atributos comunes.

Hay también una realimentación implícita, ya que con el tiempo, las relaciones tienden a “ordenarse” de manera que se vuelven más homofílicas.
El principio de homofilia, como el de la proximidad, se aplica igualmente a grupos, organizaciones, países u otras unidades sociales.
C. Kadushin (2012) establece dos focalizaciones de estudio: a nivel individual y a nivel colectivo. Este último a nivel organizacional requiere de mayor complejidad a la hora de aplicarlo. El individual es aplicado en redes personales.

Según Christina Prell (2012) la homofilia se refiere a la situación social de los actores que prefieren tener relaciones sociales con otras personas que son similares a ellos mismos. Este es un concepto relativamente antiguo en sociología, y como tal, se ha producido una buena cantidad de investigación sobre este tema.

Desde los princpios sociológicos

En su formulación original de la homofilia, Lazarsfeld y Merton (1954) distingue entre el estadio de homofilia y el valor de homofilia. La primera significa que los individuos con similares características sociales de estado son más propensos a asociarse entre sí, que por casualidad. Por el contrario, en el valor de la homofilia se refiere a una tendencia a asociarse con otros que piensan de manera similar, independientemente de las diferencias en el estado.
Esto a menudo se expresa con el famoso dicho de “Aves del mismo plumaje vuelan juntos”.

Para probar la relevancia, los investigadores han distinguido entre homofilia como línea de base  y la endogamia homofílica. La primera es simplemente la cantidad de homofilia que se esperaría por azar y la segunda distinción es la cantidad de homofilia por encima de este valor esperado.

Las personas en relaciones homofílicas comparten características comunes (creencias, valores, educación, etc) que hacen que la comunicación y la formación de relaciones  sea más fácil. La homofilia  a menudo conduce a la homogamia (matrimonio de personas con características similares).

Lo contrario de la homofilia es la heterofilia.

Everett Rogers (2003) propone los conceptos de homofilia y heterofilia para entender cómo se transmiten los mensajes en las redes sociales. Tiene que ver con el concepto de difusión. Son conceptos que retoma de Lazarsfeld y Merton en el trabajo nombrado de 1964. En este gráfico queda explicado sus diferencias:

Para esta C. Prell (2012), hay dos argumentos principales con respecto a cómo se lleva a cabo homofilia.

1) El primer argumento afirma en primer lugar que los ajustes organizacionales determinan que las relaciones se forman entre actores similares. Por ejemplo, una organización voluntaria que tiene un enfoque particular se basará en los miembros que comparten ese enfoque, y esta similitud entre los actores también (lo más probable) coinciden con otras similitudes. Por lo tanto, la composición del grupo a nivel organizacional produce homofilia. Ejemplos de este tipo incluyen grupos de puentes, iglesias, clubes deportivos (en su cercanía unos de otros: homofilia espacial), etc.

2) El segundo argumento afirma que los actores se sienten atraídos para formar lazos con otros que son similares a ellos mismos. Esto implica que el ajuste organizacional no importa, que los individuos buscan y encuentran a otros que son similares a ellos y formar lazos con estos otros, independientemente de la configuración de la organización. Así, por ejemplo, los lazos de amistad se ven como en desarrollo como resultado de las personas que están en un grupo de edad similar o que viene de un nivel educativo similar.

Diferencia con respecto a los cliques
No se debe confundir los cliques o camarillas que aunque parece ser los mismo tienen distintos punto de focalización a nivel de investigación, ya que los cliques proceden de la teoría de grafos y su investigación en redes se centra en redes de estructura amplia, en las redes completas mientras la homofilia se centra en redes personales.

Homofilia: ¿Qué es primero la gallina o el huevo?
En esta discusión sobre homofilia indica, es difícil de medir (más que los cliques) la dirección causal de homofilia, ¿Es que las personas se reúne y se vuelven más similares con el tiempo o es que se sienten atraídos por otros similares y en enlaces de formación de todo tipo?

Este problema de qué es lo primero, el lazo social o la similitud, se encuentra en el corazón de la teoría de la influencia entre la propia distinción social  y las ideas sociales de selección (Lazarsfeld y Merton, 1954; McPherson y Smith Lovin, 1987; McPherson et al, 2001;. Robins et al, 2001). La influencia social implica que las personas, a través de la interacción, se influyen mutuamente y al ser más similar a lo largo del tiempo en sus interacciones. La selección social implica que las personas seleccionan a sus socios de la red en función de la similitud, percibida de uno mismo.
Esta autora nos comenta (Prell, 2012, p. 130) que muchas personas comparan la homofilia a la propia selección social, y tratan el tema de la influencia social como una teoría distinta. Sin embargo, lso estudios al respecto enfatizan esta tensión que rodea este “efecto” de la similitud en la naturaleza causal, y muchos de ellos señalan que es difícil separar ambos conceptos. Se incrementa en esta última década un cuerpo de investigación en el desarrollo de modelos estadísticos para ayudar a desenredar estos temas de la influencia social y cómo se produce.

Reflexiones desde los principios organizacionales y de comunicación

El concepto se basa en principio básico de la comunicación que sostiene que el intercambio de ideas ocurre con mayor frecuencia entre iguales. Homofilia, en este sentido, es el grado de similitud entre dos individuos que se comunican. La similitud puede ser respecto a diferentes atributos como creencias, clase social, educación, edad, entre otros. Heterofilia, en cambio, es el grado de diferencia en ciertos atributos de dos individuos que interactúan.

La homofilia (Easley y Kleinberg, 2010) nos proporciona una primera ilustración fundamental de cómo los contextos que rodean una red pueden conducir a la formación de sus eslabones. Considere el contraste básico entre una amistad que se forma debido a que dos personas se introducen a través de un amigo común y una amistad que se forma debido a que dos personas asisten a la misma escuela o en el trabajo en la misma empresa.

La homofilia incluso (Araya, 2010) puede actuar como una barrera invisible al flujo de innovaciones dentro de un sistema, ya que las nuevas ideas entran a un sistema usualmente a través de los más innovadores o quienes tienen mayor estatus. Un nivel alto de homofilia puede significar redundancia de información y menor acceso a ideas nuevas. Dicho de otro modo, el patrón de difusión homófilo favorece la difusión horizontal de nuevas ideas, pero hace más lenta la filtración (percolación) de una idea innovadora en un sistema.
En resumen, este modelo nos señala dos elementos a tener en cuenta. Primero, que las redes interpersonales de difusión son mayoritariamente homófilas. Segundo, que en redes de difusión heterófilas los seguidores buscan líderes de opinión.
La homofilia también “coarta” la propia estructura de la red o su característica como es la diversidad.

Seguiremos hablando del tema desde la perspectiva sociológica y antropológica para un atinado análisis de red y NO desde perspectiva psicológica y por deducción del marketiniano y de community de redes sociales. No es mi estilo.

Bibliografía consultada y alguna de ellas referenciada:

McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a Feather: Homophily in Social Networks. Annual Review of Sociology, 27(1), 415–444. doi:10.1146/annurev.soc.27.1.415 Recuperado de http://j.mp/T289Nw

P. F. Lazarsfeld, R. K. Merton (1954). Friendship as a Social Process: A Substantive and Methodological Analysis. In Freedom and Control in Modern Society, Morroe Berger, Theodore Abel, and Charles H. Page, eds. New York: Van Nostrand, 18–66.

Degenne, A., & Forse, M. (1999). Introducing Social Networks. London: Sage Publications Ltd.

Kadushin, C. (2011). Understanding Social Networks: Theories, Concepts, and Findings. Oxford University Press, USA.

Knoke, D., & Yang, S. (2007). Social Network Analysis (2nd ed.). Sage Publications, Inc.

Murthy, D. (2013). Twitter: Social Communication in the Twitter Age (1st ed.). Cambridge: Polity.

Prell, C. (2011). Social Network Analysis: History, Theory and Methodology. London: Sage Publications Ltd.

Valente, T. W. (2010). Social Networks and Health: Models, Methods, and Applications. Oxford: Oxford University Press, USA.

Brooke, Clive and Ethan at Aspen Transcript. (n.d.).onthemedia. Retrieved October 2, 2012, from http://www.onthemedia.org/2009/sep/04/brooke-clive-and-ethan-at-aspen/transcript/?utm_source=sharedUrl&utm_media=metatag&utm_campaign=sharedUrl

Easley, D., & Kleinberg, J. (2010). Networks, Crowds, and Markets: Reasoning About a Highly Connected World [online]. Cambridge: Cambridge University Press. Recuperado de http://www.cs.cornell.edu/home/kleinber/networks-book/

Knoke, D., & Yang, S. (2007). Social Network Analysis (2nd ed.). Sage Publications, Inc.

McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a Feather: Homophily in Social Networks. Annual Review of Sociology, 27(1), 415–444. doi:10.1146/annurev.soc.27.1.415

Murthy, D. (2013). Twitter: Social Communication in the Twitter Age (1st ed.). London: Polity.

Retica, A. (2006, December 10). Homophily. The New York Times. Retrieved from http://www.nytimes.com/2006/12/10/magazine/10Section2a.t-4.html

What Is Homophily? (n.d.).Fast Company. Retrieved October 2, 2012, from http://www.fastcompany.com/1763558/what-homophily

Watts, D. J. (2003). Six degrees : the science of a connected age. New York: Norton. p 48-64

Watts, D. J. (2011). Everything is obvious : how common sense fails [epub]. London: Atlantic. p. 266-272

Araya, R. (2010, July 9). Homofilia y heterofilia en las redes de comunicación. Puntogov. Recuperado de http://j.mp/QVp98L

Rogers, E. (2003). Diffusion of innovations (5th ed.). New York: Free Press

Christakis, N. A., & Fowler, J. H. (2009). Connected : the surprising power of our social networks and how they shape our lives. New York: Little, Brown and Co.

Anatomía de una red social en organizaciones (extracto libro)

 

Portada del libro

Portada del libro

Esto es un extracto del libro The Connected Company de Dave Gray. La influencia de este extracto esta puesta en
Ronald Stuart Burt (nacido en 1949) que es profesor de Sociología y Estrategías de Negocios en la Universidad de Chicago. Él es el más notable por sus investigaciones y escritos sobre redes sociales y capital social, en particular el concepto de agujeros estructurales en una red social y que hemos hablado ya en este blog. También tiene tiene un libro titulado Brokerage and Closure: An Introduction to Social Capital (Oxford University Press, 2005) en el que se basa este párrafo del reciente libro de Dave Gray (The Connected Company, 2012), en el que merece la pena leer para personas que trabajen como asesores y formadores para organizaciones como es mi caso. Creo que en cualquier estructura organizacional como una educativa se pueden aplicar estos criterios. Un campus universitario tiene muchos agujeros estructrurales y nodos de gran valor de intermediación que hay que saber gestionar en procesos de innovación. Las notas son aportaciones de un servidor.

R. S. Burt ha identificado dos tipos de actividades que crean valor en redes de mundo pequeño: Brokerage y Closure.

Corretaje como intermediación (Brokerage) se trata de desarrollar los lazos débiles: construyendo puentes y relaciones entre grupos. Los corredores están en condiciones de ver las diferencias entre los grupos, y a la vez, la polinización cruzada de ideas para desarrollar las diferencias dentro de las nuevas ideas y sus oportunidades.

Clausura (Closure) se trata de desarrollar los lazos fuertes:  construcción de alineación, generar confianza, reputación y comunidad dentro de los grupos. Los constructores de confianza están en condiciones de comprender las profundas conexiones que unen a la gente y les dan a estas identidad y unos propósito comunes.

Estos dos tipos de actividad, los puentes y la construcción de confianza, demuestran dos maneras muy diferentes que las personas y las organizaciones pueden aportar valor a una red: los llamados puentes de red (Bridging) que conducen a la innovación y el fomento de la confianza en el rendimiento de un grupo. El valor que proviene de estas actividades se conoce como “capital social”. Al igual que todas las otras formas de capital, el capital social representa el valor almacenado en este caso, la relación de valor que se puede traducir en beneficios significativos y tangibles.
El poder de un nodo individual en cualquier red se puede considerar en tres dimensiones: grado, cercanía e intermediación. Veámos:

“Grado” (Degree) es el número de conexiones que un nodo tiene hacia otros nodos, por ejemplo el número de personas en su familia, o de su equipo en el trabajo, o el número de “amigos” conectados a su cuenta de Facebook. Para una organización, por ejemplo, podría ser el número de afiliados de ventas o socios comerciales. (Nota: falta distinguir entrelas conexiones outdegree y indegree.)

El valor de un grado alto tiene sus posibilidades: el potencial de conectar e interactuar con un gran número de otros nodos en la red.

La proximidad (Closeness) es una medida de la facilidad con que un nodo puede conectarse con otros nodos. Por ejemplo, usted está probablemente muy cerca de su equipo en el trabajo, ya que es fácil conectar con ellos: puede comunicarse con cualquier persona en cualquier momento. Pero es posible estar más lejos de otras personas en su empresa. Algunos que usted podría ser capaz de atrapar al andar por el pasillo o yendo a su oficina, mientras que para ver a otros es posible que necesite una cita, o puede que tenga que ser introducido por un conocido mutuo. Cualquiera que haya tratado de hacer una conexión en LinkedIn sabe que cuanto mayor sea la distancia, más difícil es hacer una conexión.

El valor de cercanía es la facilidad de  Cuanto más corta sea la distancia entre usted y otros nodos de la red menos “saltos “hay que hacer, más fácil será para que usted pueda hacer las conexiones cuando sea necesario.

La intermediación (Betweenness) indica el grado en que un nodo forma un puente o vínculo crítico entre otros nodos. Por ejemplo, muchos ejecutivos están protegidos de las distracciones de los asistentes ejecutivos o secretarios que actúan como guardianes o vigías, que controlan el acceso al tiempo del ejecutivo y la atención.

El valor de intermediación es el poder que tienen para bloquear o permitir el acceso a los demás. Cuantos más nodos que dependen de ti para hacer las conexiones para ellos, mayor es su valor potencial para ellos y, por lo tanto, el de su mayor poder (Nota: es uno de los aspectos “jerárquicos” y de poder de las redes)

Así, la persona más poderosa u organización en cualquier red es aquella que tiene un alto número de conexiones posibles, todos los que están relativamente cerca y por lo tanto fácilmente accesible, mientras que al mismo tiempo disfrutan de una posición dentro de la red de tal manera que se puede elegir para bloquear o permitir el acceso a otros nodos.

Control en redes organizacionales
En los sistemas de negocio jerárquicos, los nodos de control, por ejemplo, gerentes y ejecutivos, obtienen el poder de su intermediación en los puentes que conectan los críticos de la parte superior de la jerarquía con el fondo. Este es el poder de los gatekeepers.
Influir en cómo es percibido por los trabajadores, y la forma en que un gerente transmite información desde el terreno puede influir mucho en cómo se perciben los trabajadores de más alta jerarquía. Los ejecutivos con alta intermediación están claramente en posiciones de poder. La mayoría de los gerentes son conductos para la información dentro de sus empresas. Metas, objetivos, estrategias, y el flujo de decisiones hacia abajo, mientras que la información y la retroalimentación de las actividades de primera línea fluye hacia arriba. Puesto que los administradores ocupan los nodos a través del cual fluye la información, ejercen una poderosa influencia sobre cómo los acontecimientos se entienden. La forma en que un gerente transmite una estrategia de la empresa u objetivo puede influir mucho en la acertada toma de decisiones.

Pero a medida que el número de conexiones en una red aumenta, la “intermediación” de poder de los gerentes disminuye. Hay una razón para esto. Más conexiones crean más oportunidades para evitar los nodos de control, lo que reduce el grado (degree) en los propios nodos y, a la vez, este control puede limitar el flujo de información y conexión, limitando así su poder.

CEO de Starbucks, Howard Schultz, no pudo hacer nada para detener la fuga de un memorando confidencial de los ejecutivos. Un restaurante no puede cambiar una opinión de la aplicación Yelp. Si suelta una película y se pone malas críticas, así es la vida. E incluso el Presidente de los Estados Unidos no puede impedir la difusión de documentos confidenciales por Wikileaks. Ese es el poder de la red y su efecto (el efecto red es otra área de estudio).
Al mismo tiempo que las redes tienden a reducir el poder inherente de intermediación, sino que también ofrecen más oportunidades a los nodos para aumentar su grado de cercanía, y el número de conexiones que puede hacer fácilmente con otros nodos. Como resultado, el poder de las redes se distribuye más uniformemente y el control es más limitado que en las tradicionales organizaciones jerárquicas de las que hablamos más arriba.
El ejercicio del poder en tales sistemas distribuidos requiere un enfoque totalmente diferente al tradicional, tanto por su gestión, planificación y control.

Ver entrada en G+:

https://plus.google.com/117373186752666867801/posts/CQRVeKEsUvF de Dave Gray

Antiguas entradas