Información suave pero implacable llovizna sobre nosotros en una lluvia eléctrica, invisible e impalpable. Codificado en las ondas de radio que llenan la atmósfera, sus brumas llenan el aire, que pasa a través de las paredes de nuestras casas y penetrar en nuestros propios cuerpos.

Estas fueron las primeras palabras del físico Hans Christian von Baeyer en su libro «Information: The New Language of Science» (2005). La declaración no es sólo una metáfora interesante para nuestro mundo contemporáneo inundado de datos, sino una aguda mirada hacia el futuro. Si la visualización ha desempeñado hasta ahora un papel fundamental como un filtro de relevancia verificado, la divulgación de los patrones imperceptibles y las conexiones ocultas de esa lluvia eléctrica de la que habla Hans Christian, simplemente se convertirá en indispensable como las gotas de agua que rápidamente se convierten en un aguacero torrencial. La visualización llegará a ser imprescindible no sólo como una respuesta a la creciente oleada de datos, sino también como un mecanismo de apoyo a los distintos avances políticos, económicos, culturales, sociológicos y tecnológicos que configuran los próximos años.           

Algunos de los topics que están emergiendo y que tendrán un papel relevante en el mundo de la visualización son la visualización ubicua, la recopilación de datos sociales en la que el ciudadano tendrá un amplio protagonismo, la neocartografía, la visualización ambiental, la inteligencia colectiva y el tipo de redes por medio de sensores y la interconectividad inalámbrica ad hoc.

Los principios

En los años 30 del siglo pasado un antropólogo, un poeta y un cineasta comenzaron un proyecto en el Reino Unido, llamado Mass-Observation (Observación de masas), en el que el objetivo era lograr una mejor comprensión de su comunidad. Se pidió a los participantes que llevasen un diario que documentase su vida cotidiana. A veces se daba a los participantes objetivos específicos, como contar cuántas personas en un pub llevaban sombreros. Otras veces, el tema de la documentación fue de composición abierta con muy poca o ninguna estructura. El resultado colectivo fue una micro-visión del Reino Unido, hecho posible  gracias a miles de personas que trabajaban hacia un objetivo común. Estos diarios fueron significativos para las personas que los mantenían pero que también proporcionaron  algo útil como un conjunto. Esto, por supuesto, fue antes de los ordenadores e Internet.

Los desarrollos tecnológicos actuales ofrecen la oportunidad de recoger datos de la misma veta que Mass-Observation (esta organización sigue en pie y adaptada a los tiempos que corren) en una escala mucho mayor, aún más detallada. Podemos utilizar los avances tecnológicos, como teléfonos móviles e Internet, para recopilar información sobre nuestro entorno y nosotros mismos. Una persona puede recolectar miles de puntos de datos en un solo día sin ni siquiera pestañear o usar un lápiz y un bloc de notas. Cientos de miles de personas que forman parte de este mundo digital de ritmo rápido.

Las ciudades dinámicas a partir de sus datos

Ciudades inteligentesSegún Fran Castillo nos descubre una Internet de las ciudades y de las ciudades en tiempo real. Por todo ello este autor cree que estamos involucrados en la exploración de nuevos modelos de ciudades dinámicas. En paralelo a la evolución del modelo «Internet de las Cosas», en el que el cálculo micro está integrado en el diseño de objetos, está emergiendo el modelo Internet de las ciudades: consiste en varias capas interconectadas de energía, de movilidad y de información, como un ejemplo de una de sus capas, la Internet de la Energía. Se propone, este autor, un nuevo modelo de generación distribuida y gestión de la energía sobre la base de la infraestructura info-energética. Le ha llamado Open Energy. En el modelo, Internet de las Ciudades, el cálculo se distribuye entre la infraestructura urbana, el despliegue de la tecnología de redes de sensores que permitirá el seguimiento de los diferentes entornos urbanos y con parámetros de energía concretos. Esta tecnología produce una gran cantidad de datos (Big Data). La exploración y el análisis de estas estructuras de datos a través del diseño de sistemas de visualización (e interacción) que nos permitirá mostrar nuevas dinámicas de comportamiento en la ciudad y también nuevas dinámicas humanas. Alrededor de la confluencia entre la ciudad y de datos (Ciudad de sensores de datos) surge el concepto de Ciudad en tiempo real, en el que se explicita una dimensión evolutiva, auto adaptable y dinámica en los sistemas de información que constituyen este nuevo modelo de ciudad, por lo tanto, los ciudadanos pueden cambiar su patrones de comportamiento en relación con estos sistemas de información, creando una reconfiguración dinámica de la ciudad.

Con estos avances vienen una serie de aplicaciones posibles. Un área es la ciencia de los ciudadanos (citizen science y dos referencias: 1, 2), que se basará sobre los tres principios de la dinámica humana (de su corazón) que postula Sandra Seagal (1997): mental, emocional y físico. Las personas pueden tomar roles activos en su comunidad mediante la recopilación de datos acerca de lo que les rodea, contribuyendo a una base de datos común que los expertos a su vez puede analizar para encontrar soluciones a los problemas locales. Por ejemplo, las personas pueden reportar los niveles de tráfico, niveles atmosféricos, donde hay actividad en una ciudad, cuales son los puntos informativos candentes a nivel local, rutas/trayectorias retroalimentadas, ya que a su vez podría ayudar a otros a encontrar la mejor ruta a casa o al trabajo en tiempo real. Los ciudadanos pueden recoger los niveles de contaminación en su área, que en conjunto podrían proporcionar un punto de vista de la calidad del aire de la ciudad y proporcionar una dirección clara para la política pública. También se pueden medir temas menos formales, como ayudar a las personas a encontrar un lugar divertido para pasar el rato.

Es fácil ver el potencial de estas ideas. Sin embargo todavía estamos muy al comienzo de la recolección de datos sociales, o de detección de la participación. Antes de chocar con cualquier acontecimiento importante y realmente hacer uso de estos nuevos flujos de datos y las trayectorias. Hay tres áreas principales según Ethan You en las que tenemos que trabajar: recolección, análisis e interacción.

Recolección de datos
Con el enorme crecimiento y adopción de la tecnología móvil, la recolección de datos es más fácil que nunca. Podemos grabar nuestra posición cada pocos segundos con los dispositivos GPS, tomar fotos digitales a nuestro antojo y enviar mensajes de texto en cualquier lugar donde haya conectividad y la geolocalización. Algunos flujos de datos de este tipo se autoactualizan automáticamente de manera transparente. Otros son manuales e involucran procedimientos de recolección más activos. De cualquier manera, una de las claves para la recolección de datos es hacer que el proceso sea fácil y se entrelace con las actividades diarias.

Millones de personas alrededor del mundo poseen teléfonos móviles propios y se suscriben a los servicios de modo que están conectados en casi todos los lugares a donde van. Estos teléfonos podrían ser reutilizados en los dispositivos de recopilación de datos con el software que hace que el smartphone recupere los datos un par de veces por minuto para que la gente pueda recogerlos en casi cualquier lugar a donde vayan. Los programas se podrían crear para permitir a los usuarios que tomen fotografías y las anoten junto con la ubicación y los metadatos. Aplicaciones que cada vez serán más sencillas en el uso de metadatos colectivos e integración en dispositivos móviles.

Por supuesto que no es tan fácil como parece. Igual que con cualquier experimento, hay muchas vueltas que dar para resolver antes de ir al paso siguiente y su recopilación. La conectividad, por ejemplo, inevitablemente irregular en algunas áreas. Junto con la conectividad y el almacenamiento vienen los problemas de sincronización con el teléfono y el servidor o los sistemas en nube que se están desplegando.

Después están la cuestión de la privacidad de los datos. ¿Quién ve los datos cuando se carga en el servidor? ¿Qué tan seguros son sus datos y cuánto tiempo va a permanecer en la memoria? Algo de lo que no tenemos conciencia por su automatismo, algo que creo que se trata de otro “pozo de la privacidad” en el que dejamos pasar como si no fuera grande. Si los datos son utilizados para la investigación, son los datos correctamente «anónimos»? Por ejemplo, algunos no le importe compartir lo que comen, pero la mayoría de las personas no se sienten cómodos revelando su ubicación cada minuto del día.

En definitiva, se trata de temas a tratar, manteniendo la transparencia para el usuario. Cuando el usuario, que no está necesariamente capacitado profesionalmente para hacer frente a los datos, se convierte en un analista, es importante que sepa lo que está pasando.

Análisis
Una vez que hay flujos de datos para trabajar, tenemos que decidir qué hacer con ellos en esta economía de la abundancia. Hay una tendencia a mostrar todos los datos a la vez, lo cual puede ser apropiado a veces, pero ¿qué sucede cuando hay demasiados como para caber en una sola pantalla? En estos casos, en que en número continúan creciendo, el análisis tiene lugar entre la recolección de datos y el uso final en estado de background. Los algoritmos y las técnicas estadísticas tradicionales ayudan a localizar los puntos útiles en los datos, los que después se visualizan.

Por ejemplo, imagine un teléfono con cámara programado para tomar varias fotos por minuto, quizá con la intención de examinar con quien interactuamos o los alimentos que comemos durante un solo día. Sin algoritmos apropiados para refinar los datos, los cientos de miles de imágenes son difíciles de procesar. Nuestros cerebros son muy buenos en la búsqueda de patrones, pero cuando tenemos gigabytes o terabytes de información, es fácil ver como podrían perderse detalles importantes. El análisis no sólo ayuda a encontrar los puntos de interés en nuestros datos, sino que también filtra los valores atípicos, incluso archivos corruptos y, por otro lado, automatiza tareas tediosas como la clasificación y correlación.

Interacción
Una vez que la información está en la base de datos y adecuadamente repasada, por fin podemos ver nuestro mundo en los datos a través de la visualización. Con la creciente cantidad de datos, se han aplicado muchas herramientas, algunas artísticas, algunas análiticas y otras en el medio, para proporcionar una vista única de nuestro entorno. Y la web ha hecho que sea mucho más fácil propagar estas ideas.

La cartografía dinámica en línea, también llamada neocartografía, ha llevado a interfaces intuitivas en un entorno geográfico familiar para que todos los usuarios accedan a la información específica acerca de su país o ciudad. ¿Qué ocurriría si fuésemos capaces de ver lo que estaba pasando en la comunidad de vecinos desde  el punto de vista de los datos?  ¿Qué farolas son las que parpadean por la noche? O ¿Acaso los niveles de ruido son demasiado altos en medio de la noche? Todo será posible en tiempo real. Las personas pueden acceder a esta información, que no satisface la curiosidad sino que también proporciona evidencia cuantitativa que se pueden usar en los sectores públicos y las reuniones del Consejo o suministrada a los responsables políticos. Los participantes también pueden recoger y agregar información acerca de sus propios barrios. Así, mientras que las personas interactúan con los datos a través de un ordenador, realmente son capaces de mejorar sus comunidades.

Aunque no todos los que «analizan» estos datos tienen un trasfondo en las técnicas adecuadas, debe desarrollarse un cierto nivel de alfabetización en los datos. La visualización será esencial para hacer los datos más accesibles y se debe tener competencias de lectura de datos ambientales en el entorno de una ciudad inteligente. 

¿Y en un futuro?

Al final, todo se reduce a los datos. Todo se reduce a la persona que toma un interés por su entorno. No todas los ciudadanos serán activos. La visualización sólo es tan buena como lo son los datos que la crean y conforman, y si no hay datos, no hay nada que analizar, no hay una nueva comprensión del mundo.

Si nadie hubiera enviado a revistas para la observación de masas, no habría narración localizada en los archivos de Gran Bretaña. Hemos recorrido un largo camino desde los primeros años del siglo XX. La recolección de datos es mucho más fácil hoy en día, y tenemos la oportunidad de implicar a no profesionales en la visualización y análisis. De alguna manera, esto ya está ocurriendo con el microblogging en las aplicaciones sociales como Twitter y Facebook, o con información ciudadana en los sitios populares de noticias, con el periodismo de datos. El siguiente paso es añadir la estructura y las herramientas que se aprovechan de estas aplicaciones abiertas (fundamental para que todo esto funcione), y cuando eso sucede, obtener micro-puntos de vista de nuestro vecindario. Pero de manera más importante, vamos a empezar a ver relaciones por descubrir entre barrios y comparativas de estos, comunidades, estados, países y continentes. Veremos cómo nosotros, como individuos, interactuamos con nuestros alrededores y cómo podemos usar esa información para mejorar y para cambiar decisiones tomadas en modo autocuantificación personal. Todo un negocio en un futuro. Los ordenadores e Internet, a menudo, se consideran como la tecnología que nos aleja del mundo físico y de las interacciones sociales. Todo lo contrario. Cada vez que avancemos en esta línea de futuro y a través de los datos, la visualización y las interfaces, puede acercarnos de forma transparente y casi de forma invisible a esas capas informacionales de estas ciudades inteligentes. Serán casi invisibles por medio de las redes de sensores que se comunican con nuestro dispositivo móvil. La ciencia de los datos se abre al ciudadano de a pie y es algo que sin duda esperamos con interés.

En este entorno de sensores de datos serán ciudades microtópicasLas microtopías congregan personas, ideas y prácticas a escala local, sostenible y descentralizada. Las microtopías catalizan la interacción social, la participación colectiva y los cambios en el paisaje. Las microtopías transforman el mundo haciendo que los confines vigilados sean más permeables. ¿Contradictorio ante una ciudad de los datos que se considera sobrevigilada? No lo creo. En el próximo post hablaremos de ello.

Referencias:

13. Measure and evaluate. (n.d.). Retrieved July 3, 2012, from http://www.smartcities.info/13-measure-and-evaluate
Baeyer, H. C. V. (2004). Information: The New Language of Science. Harvard University Press.
How do you measure a Smart City? – Smart+ Connected Communities Institute. (n.d.). Retrieved July 3, 2012, from http://www.smartconnectedcommunities.org/message/1482
Hubbard, D. W. (2010). How to Measure Anything: Finding the Value of Intangibles in Business (2nd ed.). Wiley.
Hubbard, D. W. (2011). Pulse: The New Science of Harnessing Internet Buzz to Track Threats and Opportunities (1st ed.). Wiley.
IBM – How Smart is your city? Helping cities measure progress. (n.d.). Retrieved July 3, 2012, from http://www-935.ibm.com/services/us/gbs/bus/html/ibv-smarter-cities-assessment.html
Kozinets, R. V. (2009). Netnography: Doing Ethnographic Research Online. Sage Publications Ltd.
Lima, M. (2011). Visual Complexity: Mapping Patterns of Information. Princeton Architectural Press.
Seagal, S. (1997). Human Dynamics : A New Framework for Understanding People and Realizing the Potential in Our Organizations (1st ed.). Pegasus Communications.
The disposable academic: why doing a PhD is often a waste of time. (n.d.). Retrieved January 1, 2011, from http://www.economist.com/node/17723223
You, Ethan (2011). Looking Ahead. In Visual Complexity: Mapping Patterns of Information. Princeton Architectural Press